QCD vacuum-polarization corrections

Dru Renner Jefferson Lab

work with **Xu Feng** (KEK), **Grit Hotzel** (Humboldt U.) **Karl Jansen** (DESY) and **Marcus Petschlies** (Cyprus Institute)

Project X Physics Study (2012)

Modified approach to hadronic corrections

modified method handles problematic external scales: m_{μ} , Q

broad application of method builds confidence in calculations

four-flavor calculations are necessary for high-precision results

QCD vacuum-polarization

focus on corrections due to the QCD vacuum-polarization $\Pi(Q^2)$

$$\mathbf{Q}_{\mathbf{q}\mathbf{c}\mathbf{d}} = (\mathbf{Q}_{\mu}\mathbf{Q}_{\nu} - \mathbf{Q}^{2}\delta_{\mu\nu})\Pi(\mathbf{Q}^{2})$$

an example of $\Pi(Q^2)$ calculated at a single fixed a, L and m_{PS}

calculation of bare $\Pi(Q^2)$ is relatively simple with lattice QCD

A new approach for external scales

Q, an external scale unrelated to QCD, spoils dimensional analysis

$$\Pi(Q^2) = \Pi_{\mathsf{lat}} \left(a^2 Q^2 \right)$$

appearance of a in a dimensionless observable causes difficulties

$$\frac{\partial}{\partial a} \left(\Pi(Q^2) \right) \neq 0$$
 $\Pi(Q^2) \propto g_V^2 \frac{Q^2}{m_V^2}$

modified approach eliminates this unwanted scale-dependence

$$\overline{\Pi}(Q^2) \equiv \Pi\left(\frac{Q^2}{H_{\text{phys}}^2} \cdot H^2\right) \qquad \lim_{m_{PS} \to m_{\pi}} \overline{\Pi}(Q^2) = \Pi(Q^2)$$

the choice $H=m_V$ absorbs much of the strong m_{PS} dependence

QCD corrections to muon g-2

the QCD piece is a series in α with nonperturbative coefficients

$$a_{\mu}^{\text{qcd}} = \sum_{n=2} \alpha^n A_{\mu,\text{qcd}}^{(n)} = a_{\mu}^{(2)} + a_{\mu}^{(3,\text{vp})} + a_{\mu}^{(3,\text{lbl})} + \mathcal{O}(\alpha^4)$$

we calculated the LO and NLO vacuum-polarization corrections

the NLO light-by-light corrections will not be discussed by me

Leading-order correction to a_{μ}

modified method lead to reliable well-controlled calculation of $a_{\mu}^{(2)}$

use of $N_f=2$ was the only substantially weak part of calculation

Partial higher-order correction to a_{μ}

 $a_{\mu}^{(3,{
m vp})}$ is the non-light-by-light portion of the NLO correction

precision comparable to dispersive analysis, sufficient for new exp.

Leading-order correction to a_e

the measurement of a_e is used to determine the value of α

measurement of a_e so precise that lpha is now sensitive to $a_e^{(2)}$

Leading-order correction to $a_{ au}$

currently, only bounds on a_{τ} are available from experiment

however, a_{τ} should be much more sensitive to new physics

Leading-order correction to $\alpha(Q^2)$

QCD corrections to running $lpha(Q^2)$ impact high-energy predictions

combining LQCD and PQCD gives $lpha(M_Z^2)$ completely from theory

Leading-order correction to muonic-hydrogen

direct lattice calculation of charge radius is not yet feasible

but QCD corrections can be calculated with modified approach

Four-flavor calculations for $a_{\mu}^{(2)}$

charm contribution is comparable to LBL and EW corrections

use of $N_f=4$ now allows for direct quantitative comparisons

Summary

- QCD corrections to EW observables involve external scales
- modified approach handles external scales differently
- ullet new method successfully applied to many quantities in $N_f=2$
- ullet preliminary $N_f=4$ result for LO correction $a_\mu^{(2)}$ accurate to 2%
- ullet focusing on controlling all uncertainties for $N_f=4$ calculation
- ullet $N_f=4$ result for NLO correction $a_{\mu}^{(3,{
 m vp})}$ should be sufficient